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The underground contour of a sunk rectangular apron whose angles are rounded off by the curves of constant
filtration rate is constructed in the case where the water-permeable base is underlain by a confining layer
with a curvilinear roof, characterized by a constant flow velocity, too. The corresponding boundary-value
problem is solved by a semiinverse application of the velocity-hodograph method. The cases of the apron with
a horizontal insert in flow and the rabbet in flow are studied in detail. The results of numerical calculations
are given; the influence of the physical parameters of the model on the shape and dimensions of the under-
ground contour of the dam is analyzed.

Introduction. The issues of necessity and advisability of using smooth underground contours in water devel-
opment were first the focus of [1–3]. These ideas received a large development effort in [4, 5] where the inverse ap-
proach was first used. This made it possible to construct the underground contour of a curvilinear apron characterized
by the constancy of flow velocity in the case where a water-permeable base is underlain by a confining layer with a
horizontal roof and to consider a number of mixed boundary-value problems where some portions of the underground
contour are considered to be assigned in shape, and others are determined from the condition of constancy of the fil-
tration rate. This resulted in efficient solutions for the cases of a rectangular apron whose angles are rounded-off by
the curves of constant flow velocity and a rabbet rounded off at its lower part.

Works [4, 5] gave rise to the entire line of inquiry — determination of the contour of water-development
works from their assigned properties — and produced numerous investigations of flows of this kind that mainly belong
to the Kazan’ school of mechanics (see, e.g., [6–9]).

Unlike [4, 5], below, not only do we consider the construction of the smooth underground contour of a sunk
rectangular apron but we also determine the outline of the underlying water-permeable base characterized by a constant
filtration rate, too. The corresponding multiparametric mixed problem of the theory of analytical functions is solved
with a semiinverse application of the first variant of a velocity hodograph [10–12]. We study in detail the limiting
cases of flow due to the degeneration of the conformal-mapping parameters contained in the solution: the diagrams of
the apron and rabbet (or cutoff apron) in flow.

Formulation of the Problem. We consider plane steady-state flow under the water-permeable underground
contour of a sunk apron ABCC1B1A1 (Fig. 1). Let the contour of the apron base AA1 consist of two vertical segments
AB and A1B1 of equal length, the central horizontal segment CC1, and the adjacent arcs of curves BC and B1C1 with
a constant flow velocity w = v0. The flow region is bounded from below by a curvilinear confining layer FF1 on
which the filtration rate is constant, too w = u0 (0 < u0 < v0). It is assumed that the boundaries of the upper and
lower pools are horizontal, the ground is homogeneous, and the motion obeys Darcy’s law with a known filtration co-
efficient κ = const. The head H acting on the works, the flow velocity v0, the filtration flow rate Q, and the apron
widh 2l and sinking (occurrence depth) d are considered to be assigned.
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We introduce a complex motion potential ω = ϕ + iψ (the range of variation in the variable ω is presented in
Fig. 2) and a complex coordinate referred to kH and H respectively. The problem is in determining the position of
curves BC, B1C1, and FF1 with the following boundary conditions:

A1F1 : y = 0 ,   ϕ = − 0.5H ;     A1B1 : x = − l ,   ψ = Q ,

C1C : y = − d ,   ψ = Q ;   AB : x = l ,   ψ = Q ,

AF : y = 0 ,   ψ = 0.5H ;   FF1 : ψ = 0 ,

(1)

so that the filtration rate along the curvilinear portions of the apron’s underground contour BC and B1C1 and the con-
fining layer FF1 has constant values v0 (assigned) and u0 (sought) respectively.

Construction of the Solution. We consider the region of the complex velocity w (Fig. 3a), which corresponds
to boundary conditions (1). This region representing a circular heptagon with right angles and section CDC1 belongs
to the class of polygons in polar (or circular) grids [13–18] which are bounded by the arcs of concentric circles and
the segments of straight lines passing through the origin of coordinates.

According to the traditional approach [13, p. 175, and 19], such polygons are transformed, by a logarithmic
function, to rectangular ones with the subsequent use of the Christoffel–Schwartz formula. However, this method in-
creases the number of conformal-mapping parameters. This involves difficulties associated with the disturbed conform-

Fig. 2. Region of the complex flow potential.

Fig. 1. Diagram of the underground contour of water-development works with
portions of constant flow velocity.
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ity of mapping at the critical points w = 0 and w = ∞ of the logarithmic function used. The total number of unknown
constants increases even more, when we have to allow for the parameters appearing in solution of the filtration prob-
lem itself. We are dealing with the scale modeling constant and the affixes of removable singular points occurring on
the z flow plane and absent from the w plane.

Unlike the universally adopted method, below we propose that the Riemann–Schwarz symmetry principal be
used. Conformal mapping is realized directly in a closed form simple and convenient for subsequent practical purposes
in terms of elementary functions; all the mapping parameters sought are determined incidentally during the construction
of the solution.

In view of the total symmetry, we restrict our consideration to the region of motion ABCDEF on the z, ω,
and w planes (Fig. 1) and the corresponding similar regions on the ω and w planes (Figs. 2 and 3a).

With allowance for the special properties of the polygons in polar grids due to the abundance of right angles, in
conformal mapping, it is convenient to take, as a canonical region, the rectangle [20] 0 < Re τ < 0.5, 0 < Im τ < 0.5ρ of
the τ plane (Fig. 3b), where ρ(k) = K′ ⁄ K, K′ = K(k′); k′ =  √1 − k2 ; K(k) is the complete elliptic integral of the first kind
for the modulus k. Then the function conformally mapping this rectangle onto the quarter of the ring of the plane of the
complex velocity w is expressed as

w (τ) = v0 exp (τ − 0.5) πi , (2)

whence we determine the physical parameter u0 = v0 exp (−0.5πρ).
We conformally map the rectangle of the auxiliary variable τ onto the region of the complex potential ω (Fig. 2).

As a result we obtain

ω = 
0.5

K (k)
 F 




arcsin 

λ dn (2Kτ, k)

k√1 − λ2 sn2 (2Kτ, k)
 , m




 , (3)

where F(ϕ, m) is the elliptic integral of the first kind for the modulus m = k√(1 − k′2A2B2) ⁄ (1 − k′2A2)λ2 , λ =
√(1 − k′2B2) , A = sn (2Ka, k′), B = sn (2Kb, k′), and sn (ϕ, k), cn (ϕ, k), and dn (ϕ, k) are the Jacobi elliptic func-
tions (sine, cosine, and delta respectively) of the modulus k. The filtration flow rate is determined from the formula

Q = 0.5Hρ (m) = 0.5HK ′ (m) ⁄ K (m) . (4)

To solve the problem we use the first variant of the velocity-hodograph method [10, pp. 250–251, 11, p. 60,
and 12, pp. 603–606]. Taking relations (2) and (3) into account and following [21, 22], we arrive at the dependences

dω
dτ

 = − 
C sn (2Kτ, k) cn (2Kτ, k)

∆ (τ)
 ,   

dz
dτ

 = − 
C sn (2Kτ, k) cn (2Kτ, k) exp ((0.5 − τ) πi)

v0∆ (τ)
 ,

(5)

Fig. 3. Region of the complex velocity (a) and the auxiliary parametric variable (b).
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∆ (τ) = √[1 − λ2 sn2 (2Kτ, k)] [A2 + (1 − A2) sn2 (2Kτ, k)]  ,

where C > 0 is the scale modeling constant. Functions (5) satisfy boundary conditions (1) formulated in terms of the
functions dω ⁄ dτ and dz ⁄ dτ; therefore, they are the parametric solution of the initial boundary-value problem. Repre-
sentation of dependences (5) for different portions of the boundary of the τ region with subsequent integration over the
entire contour of the auxiliary region leads to closure of the contour of the region of the motion z, thus serving as a
computation check.

As a result we obtain the expressions for the basic geometric and filtration characteristics

C
v0

 ∫ 
0

0.5

XBCdt = ∆l ,   
C
v0

 ∫ 
0

0.5

YBCdt = ∆d ,   C ∫ 
0

0.5

ΦEFdt = 0.5H , (6)

the coordinates of the points of the apron’s underground contour BC

xBC (t) = l − 
C
v0

 ∫ 
0

t

XBCdt ,   yBC (t) = − d1 − 
C
v0

 ∫ 
0

t

YBCdt ,   0 ≤ t ≤ 0.5 , (7)

and the coordinates of the curvilinear confining layer EF

xEF (t) = L − 
C
u0

 ∫ 
0

t

XEFdt ,   yEF (t) = − 
C
u0

 ∫ 
0

t

YEFdt ,   0 ≤ t ≤ 0.5 . (8)

Here, ∆l = l − l1, ∆d = d − d1, XBC = sin πt 
sn(2Kt, k) cn(2Kt, k)

∆(t)
, YBC = cos πt 

sn(2Kt, k) cn(2Kt, k)
∆(t)

, ΦEF = 
dn(2Kt, k′)

∆1(t)
,

L = l + l2, XEF = sin πtΦEF, YEF = cos πtΦEF, ∆1 = √[dn2(2Kt, k′) − λ′2][1 − A2dn2(2Kt, k′)] .

Setting t = 0.5 in Eqs. (7) and (8), we find the sought dimensions of the underground contour of the apron
and the curvilinear confining layer

l1 = xBC (0.5) ,   d1 = yBC (0.5) ,   L = l + l2 = xEF (0.5) ,   T = yEF (0.5) . (9)

A calculation check uses other expressions for the flow rate Q and the geometric dimensions l2 and T

Q = C  ∫ 
a

0.5ρ

 ΨAFdt = C  ∫ 
b

0.5ρ

 ΨDEdt ,   l2 = 
C
v0

  ∫ 
a

0.5ρ

 XAFdt ,   T = d + 
C
v0

  ∫ 
b

0.5ρ

 YDEdt , (10)

where

ΨAF = 
sn (2Kt, k′)

∆2 (t)
 ;   ΨDE = 

sn (2Kt, k′)
∆3 (t)

 ;   XAF = ΨAF exp πt ;   YDE = ΨDE exp πt ;

∆2 = √[sn2 (2Kt, k′) − A2] [1 − λ′2 sn2 (2Kt, k′)]  ;   ∆3 = √[sn2 (2Kt, k′) − B2] [1 − k′2A2 sn2 (2Kt, k′)]  .

Limiting Cases. Apron and Rabbet in Flow. Flow in the Ground of Infinite Depth. We primarily dwell on the
case where the surface of the confining layer is very deep-seated. Then points E and F merge together at infinity in the plane
of motion z, and the rectangle of the plane of the auxiliary variable τ becomes a half-band 0 < Re τ < 0.5, 0 < Lm τ < +∞
(Fig. 3b), since the modulus k is equal to 0, k′ = 1, K(0) = 0.5π, K′(0) = ∞, and consequently ρ = ∞. But since we have u0 =
v0 exp (−0.5πρ) = 0, points E and F merge together at the origin of coordinates in the plane of the complex velocity w. The
solution for this limiting case is obtained from formulas (5)–(10), if we set k = 0 in them and take into account that, for this
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value of the modulus, the elliptic functions degenerate into trigonometric ones: sn (2Kτ, 0) = sin πτ, cn (2Kτ, 0) = cos πτ,
and dn (2Kτ, 0) = 1. Also we are able to integrate the third equation of (6) and to obtain the modeling parameters in explicit
form

C = 0.5H√(1 − B2) (1 − A2)  π . (11)

Formulas (9) and (10) yield that the flow rate is Q = ∞, l2 = ∞, and T = ∞. We note two limiting cases
associated with the degeneration of the conformal-mapping parameters A and B within the framework of the filtration
diagram in question.

Apron in Flow (Not Sunk) with a Horizontal Insert. In this case the vertical segment AB is absent from the flow
plane, which corresponds to the merging of points A and B: then we have the parameters a = A = 0 and d1 = 0.

Integrating Eqs. (6), we obtain the following expressions for the filtration characteristics:

∆l = 
H (1 − λ′)
πv0λ

 ,   ∆d = d = 
H [E (λ) − λ′2K (λ)]

πv0λ
 ,   l1 = 

H [E (λ′) − λ2
K (λ′) + λ′]

πv0λ
 ,

l = l1 + ∆l = 
H [E (λ′) − λ2

K (λ′) + 1]

πv0λ
 ,

(12)

where E(λ) is the complete elliptic integral of the second order for the modulus λ = √1 − B2 . Formulas (12) are co-
incident (accurate to the notation) with formulas (10.9), (10.13), and (10.16) in [5, pp. 197–198].

Rabbet or Cutoff Apron in Flow. In this case the horizontal segment CD is absent from the flow plane, which
corresponds to the merging of points C and D: we have the parameters b = B = 0 and l1 = 0. Integration of expres-
sions (6) leads here to the expressions

∆l = l = 
H [E (λ) − λ′2K (λ)]

πv0λ
 ,   ∆d = 

H (1 − λ′)
πv0λ

 ,   d1 = 
H [E (λ′) − λ2

K (λ′) + λ′]
πv0λ

 ,

d = d1 + ∆d = 
H [E (λ′) − λ2

K (λ′) + 1]

πv0λ
 ,

(13)

where the modulus is λ = √1 − A2 . Formulas (13) are coincident with formulas (10.19), (10.22), and (10.24) from [5,
pp. 199–200].

A comparison of formulas (12) for the apron with a horizontal insert in flow and formulas (13) for the rabbet
in flow shows that they are obtained from one another by replacement of the parameters A and d in them by B and
l and conversely.

Analysis of Numerical Results. We evaluate the influence of the model’s physical parameters H, v0, l, and d
on the shape and dimensions of the underground contour of the dam from consideration of the two extreme limiting
cases of the previous section. Figure 4 shows the apron with a horizontal insert in flow, calculated for H = 10, v0 =
1, and l = 12.4 (basic variant). Figure 5 plots d (curves 1) and l1 (curves 2) as functions H, v0, and l.

An analysis of the data of the figures leads us to the following conclusions. Growth in the head and decrease
in the velocity of flow past the apron and in its width increase the thickness of the apron and diminish the dimension
of the insert. In Fig. 5c, it is seen that the shorter the apron, the thicker it must be, with the same flow velocity being
preserved.

Noteworthy is the identical qualitative character of the plots of d and l1 as functions of the parameters v0 and
l: decrease in the flow velocity v0 and in the apron width l leads to growth in the apron thickness d and decrease in
the insert width l1. Thus, with a decrease of 5 times in the velocity σ0 the apron thickness grows quite significantly
— by 2135%, whereas a change of 1.66 times in the width l is accompanied by a proportional growth of 55% in the
thickness d and a decrease of 42.7% in l1. Conversely, as the head H grows twofold, the apron thickness d increases
by 252%, whereas the width l is diminished only by 10.9%.
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Fig. 5. Quantities d (curves 1) and l1 (curves 2) as functions of H (a), v0 (b),
and l (c).

Fig. 6. Rabbet in flow calculated for H = 10, v0 = 1, and d = 10.

Fig. 4. Apron in flow calculated for H = 10, v0 = 1, and l = 12.4.
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Figure 6 shows the apron in flow calculated for H = 10, v0 = 1, and d = 10 (basic variant). Figure 7 plots
the quantities d1 (curves 1) and l (curves 2) as functions of the parameters H, v0, and d.

An analysis of Fig. 7 shows that the character of the plot of d1 and l as functions of the parameters H, v0,
and d changes fundamentally here compared to the apron in flow. Now, conversely, growth in the head and decrease
in the velocity of flow past the rabbet and in its thickness diminishes the depth and increases the width of the cutoff
apron. Figure 7c, where the parameter d is varied, yields that the longer the rabbet, the thinner it must be, with the
same flow velocity being preserved. Thus, with an increase of 5 times in the length d, the depth d1 grows quite sig-
nificantly — by 544%, whereas the cutoff-apron width is diminished nearly 4 times.

Just as in the case of the apron, the flow velocity exerts the most substantial influence on the dimensions of
the dam. It is seen that the rabbet width grows by 2058% with a decrease of 5 times in v0.

Conclusions. We have found the exact analytical solution of the problem on construction of the underground
contour of a sunk rectangular apron of water-development works, whose angles are rounded off by the curves of con-
stant filtration rate, in the case where the water-permeable base is underlain by a confining layer with a curvilinear
roof, characterized by a constant filtration rate, too. We have studied the limiting cases in detail: the apron with a
horizontal insert and the rabbet (cutoff apron) in flow.

It has been established that growth in the head and decrease in the velocity of flow past the apron (rabbet)
and in its width (thickness) increase the apron thickness and diminishes the dimension of the insert and, conversely.
diminish the depth of the rabbet and increase its width.

The author expresses his thanks to G. G. Chernyi and S. A. Isaev for their attention expressed during the
work and for support.

NOTATION

a and b, unknown affixes (images) of points A and D on the plane of the auxiliary parametric variable; d,
occurrence depth of the apron; d1, depth of the rectangular part of the apron or the rabbet; E, complete elliptic integral
of the second kind for the modulus k; F, elliptic integrals of the first kind for the module k; i, imaginary unit; Im,
imaginary part of the complex number; H, acting head; k, modulus of elliptic integrals; k′, additional modulus; K and
K′, complete elliptic integral of the first kind for the modulus k and k′ respectively; l, half-width of the apron; l1, half-
width of the horizontal underwater part of the dam; l2, width of the water-permeable portion of exit of water into the
lower pool; L, distance from the origin of coordinates of point F of the confining layer; m, modulus of elliptic inte-
grals; Q, filtration flow rate of water; Re, real part of the complex number; t, integration variable; T, largest occur-
rence depth of the curvilinear confining layer; u and v, real and imaginary parts of the auxiliary parametric variable;
u0 and v0, filtration rates along the confining layer and the water-development works respectively; w, complex flow
velocity; x, y, abscissa and ordinate of a point of the flow region; z, complex coordinate of a point of the flow region;
κ, filtration coefficient; λ and λ′, modulus and additional modulus of elliptic integrals respectively; ρ, dimensionless
quantity related to the ratio of the complete elliptic integrals of the first kind K′ and K; τ, auxiliary parametric vari-
able; ϕ, velocity potential; ψ, stream function; ω, complex flow potential. Subscript: 0, fixed constant.

Fig. 7. Quantities d1 (curves 1) and l (curves 2) as functions of H (a), v0 (b),
and d (c).
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